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1 Introduction and summary

Recently, Alday and Maldacena proposed [1] that planar N'=4 SU(N) SYM MHV gluon
scattering amplitudes at leading order in the strong 't Hooft coupling expansion can be
calculated using the dual gravity (string) description. A crucial step in the calculation
procedure is an application of an ordinary bosonic T-duality transformation to the four
CFT coordinates of AdSs x S°. This suggestion implies that such amplitudes possess a
dual conformal symmetry at strong coupling originating from the fact that AdSjs is self-
dual under the T-duality. This dual symmetry has been observed also in gluon scattering
amplitudes calculated in the weakly-coupled gauge theory description [2, 3.

Using the AdS/CFT duality it was shown that such a symmetry is expected to be
valid at all values of the 't Hooft coupling [4, 5]. This was done by proving that the afore-
mentioned T-duality together with a novel T-duality of Grassmann-odd coordinates of the



target-superspace form an exact quantum duality under which the full AdSs x S° super-
string is self-dual. Since both the original background and its dual possess superconformal
symmetry, it means that each of them has both the manifest superconformal symmetry and
a dual one. Furthermore, [4, 5] have linked the duals of the superconformal Noether currents
to the non-local currents implied by the integrability of the superstring on AdSs x S° [6].

In view of these results it is natural to inquire how ubiquitous this dual superconformal
symmetry is. The aim of this paper is to consider this question by analyzing the fermionic
T-duality symmetry of integrable Green-Schwarz sigma-models on AdS backgrounds with
Ramond-Ramond fluxes in various dimensions. Some of these sigma-models have been
constructed in [7-10].

We show that sigma-models based on supercosets of PSU supergroups, such as AdSs x
52 and AdSs x S? are self-dual under fermionic T-duality. Supercosets of OSp supergroups
such as non-critical AdSs and AdS, models, and the critical AdS, x CP? background (whose
coset model was constructed and explored in [11-15] and the full model was constructed
in [22]) are not self-dual. In the OSp models we find that the Buscher procedure [16, 17] fails
due to a lack of appropriate quadratic terms. This is because the Cartan-Killing bilinear
form of the ortho-symplectic group is non-zero only for products of different Grassmann-
odd generators. Thus, one may expect this to imply that in those cases in which a dual
theory exists, the theory does not have a dual superconformal symmetry.

The paper is organized as follows. In section 2 we show that the AdS, x SP (p =
2,3) target-spaces based on PSU cosets are self-dual under a combination of bosonic and
fermionic T-duality. In section 3 we consider models based on supercosets of the ortho-
symplectic supergroup, for which the Buscher procedure [16, 17] of gauging an isometry
of the target-space in order to obtain the T-dual sigma-model fails. These include the
non-critical superstring on AdSs with four supersymmetries and AdS, with eight super-
symmetries, the supercoset construction of AdS, x CP3, and a model of AdSy with eight
supersymmetries. In section 4 we present a general algebraic argument to when a supercoset
is expected to have a fermionic T-duality symmetry, and when it will fail to have one. In
the appendices we provide details on the relevant superalgebras that are used in the paper.

2 AdS, x SP? target-spaces

In this section we show that the AdS, x SP (p = 2, 3) target-spaces based on PSU super-
cosets are self-dual under a combination of bosonic and fermionic T-duality.

2.1 The AdS, x S? target-space

The target superspace whose bosonic part is AdSs x S? can be realized as the coset space
PSU(1,1]2)/(U(1) x U(1)).! The Green-Schwarz sigma-model for supercosets with a Zj4

'For this to be a superstring, this superspace has to be supplemented by an additional internal CFT
with the appropriate central charge. It is not clear that such a description exists using such a partial
Green-Schwarz action (the hybrid model discussed in [18] might be a better option for this kind of
superstring construction).



automorphism is given by the action [7]

R2

4ol

S

1 1.
/d2ZSt1" <J2J2 + §J1J3 — §J1J3> , (2.1)

where J = g~10g for g € G and J; is the current J restricted to the invariant subspace H;
of the Z4 automorphism of the algebra of the group G. Using the psu(1,1|2) algebra given
in appendix D, the sigma-model (2.1) takes the form

R? 1 _ _ 1. - 1 _ 1 _
= d*z|=(Jp — - - - = -

S 47‘1’0// Z|:2(JP JK)(JP JK) + 2JDJD + 2JR1JR1 + 2JRQJRQ
i

Qnag(JQanﬁ — JQang + Jsajsﬁ — Jgajgﬁ) , (2.2)

where 112 = 121 = 1 and zero otherwise. The analysis here will follow that of [4]. A general
group element g € PSU(1,1|2) can be parameterized as

g= EP T K40°Qa+€Sa B B — eéaQa+éaSayDez y'Rily (2.3)

)

We partially fix the s-symmetry such that {¢ = 0, and we use the U(1) x U(1) gauge
symmetry generated by P + K and R3 to set ' = 0, thus the coset representative is

g =Pt QacB (2.4)

Using the fact that the group generated by {Q,S,D,Ri} transforms P and @), among
themselves, the components of the Maurer-Cartan 1-form are

Jp = [e B (dzP + d0°Qo)e®]p, Jo. = [e B (dzP + d6°Qp)ePq..,
JK == 0, JQQ = [B_BdeB]Qa, JSa = 0, JS'Q == [G_BdeB]ga,
JD = [G_BdeB]D, JRi = [e_BdeB]Ri. (2.5)

This sigma-model is T-dualized in the directions of the Abelian sub-algebra formed by
the generators P and @, according to the procedure of [16, 17], by introducing the gauge
fields A, A for the translation P and A®, A® for the supercharges Q, and the corresponding
Lagrange multipliers  and O

5= o [ =] a4 4 Quelpie P AP+ AQue -

Y 2
i
2
1. - 1 - 1 - i - -
+ §JDJD + §JR1JR1 + §JRQJRQ + 577“5(‘]@@']@5 + JAQJSB) +

Naple” " (AP + A7Q,)e"|q, [e™ (AP + A7Q,)e"]q, +

+ T(DA — DA) + 0, (DA™ — DA%)|. (2.6)
It is convenient to change variables to

A = ["B(AP + A°Qa)ePlp, A = [ P(AP + 4°Qg)ePlo

@



and similarly for the right-moving gauge fields. Using the inverted relations
A= [BAP+A°Que Plp, A® = [(F(AP+A%Qe)e Flg,  (28)

the action in terms of the new variables reads

R? 1, i _
— d2 ZAA -2 A/aA/B
S 4ol : [2 2 Tl *

— 0% (A'[eBPeB)p + AP Que™P)p) +

+ 0z (A'[ePPe™Pp + AP Que Pp) —

~ o <A'[€BP€_B]Qa + A,B[GBQBQ_B]Q) i

+ 0o <Al[€BP€_B]Qa + A,B[GBQBQ_B]Q) } (2.9)
where ... denotes the spectator terms. Since the gauge fields appear quadratically in the

action, one can integrate them out by substituting their equations of motion

A = —2[ePozPeP)p — 2[eP80,Pe P, = —2[e P(0ZK + i00,5%)eP K, (2.10)
A" = 2[ePdzEPeBp + 2(eP 00, PePq, 2[ B(@xK—l—z@G 5Pk,

A = 2in°P([eP0zQpeP)p — [e 897Q56 Blo )= PBle=B(0TK + 26975“/)63]5@,
A = 2in*P([P0TQpeP]p — [P00,Qze Plg.,) = —znaﬁ[ B(9ZK +i860,57)eP) 4

and obtain after rescaling ¥ — %EE and ga — %50,

R2

4o/

S =

/ d?z B[eB(@EEK +i00,5%)eP | ke P(OTK + i00,5%)eP | —
- %nag[e_B(BEK +i00,57)eP] g, [e P(0TK +i00,5")eP)s, + ... |, (2.11)

where we used €,3 to lower the spinor indices of n*P.

In order to show the self-duality of this background under the above T-duality, the
original action has to be brought to the same form as (2.11). One can easily check by using
the 6570'(?7 = emagw that the psu(1,1|2) algebra admits the automorphism

P K, D——-D, Qi< S% Qu< 5, (2.12)

with the rest of the generators unchanged. Applying this automorphism combined with
the change of variables

x—z, 60%— 1'50“ 6% éa, yi — %, (2.13)

0 (2.5) one obtains (2.11).
In order to complete the proof of quantum mechanical equivalence we also have to show
that the Jacobian functional determinant from the change of variables (2.7) is the identity.

The transformation of variables was done using e”. Since it is in a unitary subgroup of



the PSU(1, 1|2) group, its super-determinant is equal to one and hence the Jacobian of the
transformation is trivial and does not induce any shift of the dilaton. In order to see this
explicitly, one can treat (A, A%) as a vector and write the adjoint action of the generators
D, R;j, Qo and S, as matrices acting on this vector

1 0 0 0
[adD] = (0 %5a6> s [adRij] - <0 _%O_Ua5> )
[0 —eup 1 0 0
() e ()

which evidently have a vanishing supertrace. Hence, the super-determinant of similarity
transformations with elements of the group generated by these generators is the identity.

2.2 The AdS; x S? target-space

We construct the Green-Schwarz sigma-model on AdS3 x S using the supercoset manifold
(PSU(1,1]2) x PSU(1,1]2))/(SU(1,1) x SU(2)) with 16 supersymmetry generators. Using
the Zy structure (E.4) we have

Jo = Jy (P, — Ko) + JpD + J,R, = %(Jpa — )Py — Ku) + JpD + J, R, (2.15)
J1 = Jsgm+aUdi(S£a +a'"Qfs) = %(Jséd + aUJdi)(Séa +a'"Ql)
J3 = JsgmfaUdi(Séa —a'*Ql) = %(Jséd - aUJdi)(Séa —a'™Ql%).
Thus,
Str(JaJy) = —%(Jpa Tk Ty — T ™ + IpTp + I, Tn, (2.16)
Str(JyJy) = %(03)1K6aﬁe@5usé& +allJoy WWsk ¥ ), (2.17)

and the action reads

2
S—R

4o

1 _ _ _ _
/d22 [ — 5P = Ik )P, = JK, ey + I I + TR, IR, (2.18)
L 31K 7 7
+§(O' ) €45€ap (JsédJsgg +JQ.{1@JQ§5>:|'
Next we parameterize the supergroup element

g = exp(z®Py + 0°'QLa) exp(0°*° Q%4 + 2V SLa )y exp(y, Ry /y)  (2.19)
exp(z2P, + 0° QL L )eP.

Define the currents

J=gldg=j+j,  j=e P(da"P, +d0°*'QLy)e?,  i=ePdeP. (2.20)



Using these definitions and the algebra (E.1) we get the currents

TP, = Jpa; JQ;&:jQéa’ JQi&:jQia’ Jsé&:jséa’ Jsz2, =0

[e%e%

Jk, =0, Jp =jp, JR, =R,

the action reads

R2 2 1 . - P . S

S = T d°z| — 5JPadPyab +1DID + IR, IR,
1 . s . - . -

+§€aﬁfd3 Isi st +JQ;dJQ;£ —ez e, |-

Introducing gauge fields and Lagrange multipliers we get the action

S = 4]:; /sz[— %A’ A, lab +iDiD + iR,
J%%B%B (jsédjb’;@ +Ag1, A/Q;B = Qide§B>
1T (DA — 0A%) + 5;&(5,4%& — aAQLd)] :
where
A = e B(A*P, + Al0Q! e, Al = A, Ap, = A%,

A= BB(A/aPa + A/laand)efB‘
Solving for A" we get

Al = 200T[e” Pae™P]p, + 90)41” Pae Pl )
= 2n4c[e P (0K, + 90452 )P k.
A, = —2(03y[e® Poe Plp, + 90L 4[e® Pae P 1 )

= —2ac[e B (T Ky, + 90452 ) eP

c

1 ~ ' B _B 't B -B

peesaily, = ~ORI Qugeln, — Op5le” Quac gy )
= —capeple P (0T K, + 05174’53/;/)63]5;3

1 A’ »~1,BnHl _—B anl Bl _—B

§eaﬁ6&/§AQ;B = —(0Tp[e” Quae P, — 3063[6 G € ]Q;B)

= —€apsp e B(07° K, + 5917%53&)63]5;3.

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)



Thus,

R2 1 - .7 [
S=1- /szbA}paA};bmb +1DiD +IRIR, (2.29)
1 . Y / Al 3 B
+§€aﬁedﬁ§ (JSé&JS};Q B AQéaAQ}@g B JQi@JQEB)}
R2

1 ~ o~ _ e
= o /de [ - 54[6_B(8$be + 001452 N eBl g [e P (070 Ky, + 0012952 ) eP | ke, n™
o - o Y 1 . Y o Y
+)p)p +J)R,IR, + 5€abap Jsé&Js;B - JQi&JQ?@B
—4le” P (07" Ky + 00177535 )ePl g2 e P (03", + 00177 57 )] %ﬂ .(2.30)

We can define J'’s

J = e B(203° K, + 20017 5% )P, (2.31)
and the action reads
R2 2 1 / 7/ . ry . -
S = Tred d°z| — §Jpajpbnab +)D)D )RR, (2.32)

1 . - / I/ . Y
+5€aptap (Jsé&Js;B ~ Tz e~ JQi&JQS;G>]'

Applying the following automorphism of the algebra

D — —D, K, — —03, Py, b — —Jabs (2.33)
Ry — Ry, Ry — — Ry, R3 — —R3,

Nig — —Nia, Naz — Nas, N31 — —N3zq,
I

1 1 J
« O-IJO-&BSQB’

ad

followed by the change of variables

To — =205 %, Ope — 20% Bﬁi . (2.34)
2 1 1 2 2 2
Oac < 945800 i —yi/y Y2 = —y2/y”, Ys — —y3/y”,

the action (2.32) is mapped to the original one (2.22).

3 Models based on the ortho-symplectic supergroup

In this section we consider models based on supercosets of the ortho-symplectic supergroup,
for which the Buscher procedure [16, 17] of gauging an isometry of the target-space in
order to obtain the T-dual sigma-model fails. These include the non-critical superstring
on AdSy with four supersymmetries and AdSy with eight supersymmetries, the supercoset
construction of AdS; x CP? which is conjectured to be dual to superconformal Chern-

Simons theory in three dimensions [19], and a model of AdSy with eight supersymmetries.



3.1 The Green-Schwarz sigma-model on AdS; with four supersymmetries

The non-critical AdSs background with RR-flux can be realized as the supercoset
OSp(2|2)/(SO(1,1) x SO(2)). The Green-Schwarz action is of the form (2.1) (see ap-
pendix A for the details of the algebra and the conventions that are used).

Fixing the SO(1, 1) x SO(2) gauge symmetry and x-symmetry one can choose the coset
representative -

g= e:vPJr@Qe@QJrﬁSyD. (31)

The generators P and ) form an Abelian subalgebra, which we will attempt to T-dualize.
In this parameterization the Maurer-Cartan current J takes the form

J = ymx—mwmp+- sz+ [(2000 — 9x) € + 00] Q + y'/*0ES +

1/2
oy = opE
+ (; - 2695) D + i00¢R. (3.2)

The sigma-model can be written explicitly as
R2

4o/

1 _ 1. - _ _
S = f%—;h+h%bﬁkﬂahh+h%+%%—

—hg—%k} (3.3)

The action in terms of the coordinates is then given by

2 —_— 9 ) —_ — — — - —_—
g B [ 2, [ 2020240y L 5o 50 4 000s) + 20450 + 005y) +
Arar 292 32 Yy
+ 2020080 + Le(000x — 0280) + (0698 + 0859) | (3.4)
Yy Yy Yy

Note that the action is indeed quadratic in 6 so naively one should be able to T-dualize it
along that coordinate.
An equivalent action can be written using two gauge fields [16, 17]

g R? /d2z —A A, +0yoy 1
 dna!

I ~ 1. _
2y2 — ?9(14.3314.6 + AgAm) + gg(ayAg + Ag(?y) +
4__ 1- — - 1 - _ - _
+ ;95149149 + ZS(AQAJ; — AxAg) + ;(Agae + 36149) + .%'(8143[; — ({9143[;) +

+6(04g — 04y)]|. (3.5)
The classical equations of motion for the gauge fields are
y A —|— 9149 — —5149 —0x =0, (3.6)
) +3$A-+1&4+8%—0 (3.7)
2y2 T y2 6 y 6 — Y .
1= 1- 4__ 1- 1. _~
—0A; — =80y — —08Ag + —EA, — —36’ — 00 =0, (3.8)
Y Y Y
1 1 4 1-- 1
29A — —E0y+ —0EAy — —EA, + —00 + a6 = 0. (3.9)
Yy Y Yy Yy Y



Since Grassmann variables such as 6 and ¢ have non-trivial kernels, one cannot solve for
Ag and for Ay. Solving for A, and A, one gets

Ay = =204 + 2yEAg + 2907, (3.10)
A, = =204 — 2yEAy — 24207 (3.11)
Substituting (3.10) and (3.11) in the action (this can be done since they appear only
quadratically in the action, but the classical procedure should be supplemented by a func-
tional determinant coming from the Gaussian path integration of A, and A,) yields

2
5= [ [ 020505 — 20T Ag — 2yEAGTF — 2005 A + 20 AgT +
T
ydy 1. - R . -
gzt 80ude + Agdy) + (4908 + 06 4g) — D6 Ag + 00 Ay . (3.12)

Thus, after integrating out A, and A, the remaining fermionic gauge fields Ay and Ay
serve as Lagrange multipliers forcing in the path integration over 6 that

~ 1. _ 1 -
2007 — agay + 2y&oT — 530 — 96 =0,

_ 1__ _ 1.~
2007 + g&?y — 2901 — ;89 —00 =0, (3.13)

which express the non-zero modes of 0 in terms of the other fields, effectively reducing the
path integration over ] only to its zero-modes.

This appears rather strange as the original action did include a term quadratic in 6. A
possible explanation is that the quadratic term is k-symmetry-exact, and hence does not
influence the equations of motion.

In order to support the above claim we do the same computation with a different gauge
choice for the k-symmetry. The coset representative in this gauge can be parameterized as

g = e"PHIQIQHES D (3.14)

and the Maurer-Cartan current is

J = 2(0w — 2000 — 0206)P + —— (00 — Ox& + D006)Q + ——00Q) + y 08 +
y yl/? yl/?
+ (% — 00¢ — aga) D- %(aég + 0O)R. (3.15)
In this gauge the action is
2 _ ) ) ) _ _ _
g- 1 /d% (=14 00)020x + 990y _ 1 5np + 060) —
4o/ 292 12

- 55(8:::59_ — 9007) + %g(ayéé + 909y) + %é(@yé{ + 9dy) +

+ S06(000¢ — 900) + 5(1 1 06)(0600 + 0950)| (3.16)



This action has no quadratic term in the Grassmann coordinate 6 so the usual procedure
introduced by Buscher [16, 17] cannot be applied. This lends credence to the explanation
that in the different gauge above the procedure failed because the quadratic term is

K-symietry-exact.

3.2 The AdS; target-space

The non-critical superstring on AdS4 with eight supersymmetries can be constructed as
the supercoset OSp(2[4)/(SO(3,1) x SO(2)). Taking g € OSp(2|4) in (2.1) one obtains the
sigma-model

R? - ) )
5= Y dQZ[nm"(JPm+JKm)(JPn +Jk,) + JpJp +
 dicap <JQ"jQB —Jo.T0s + Isa jS,@ —Js, jSﬁ) ; (3.17)

where the conventions for the algebra are given in appendix B.
The general group element can be parameterized as

& PrAw™ Km+0Qa oB_ B _ 0% Qa+6%Sa+ESa, D (¢ RAw™" Minn_ (3.18)

e ye

g=e€
We assume that we can partially gauge-fix the k-symmetry such that é“‘ =0 and we will
also fix the SO(3,1) x SO(2) gauge symmetry by setting w™ = 0, ¢ = 0 and W™ = 0
essentially picking the specific coset representative

2™ PrnA-0%Qa , B B _ eéaQa+5a5a
)

g=e e yP. (3.19)

One can check that the needed components of the Maurer-Cartan 1-form are

Jp,, = [e7P(da" Py + d0°Qu)e” ], Jk,, =0,
Jo. = [e_B(dxm m + d@ﬁQﬁ)eB]Q , [ ]
Jo. = le7PdeP] 5 . Jg =0, = [e7PdeP] . (3.20)

The action then becomes

RZ
4o/

+ [673863] D [efBgeB] pT 4iea5( [efB((?:cum + OGWQW)GB] 0n [efBgeB] Ou

— [e_BaeB]Qa [e B (02" Py + (%WQy)eB]QB )] . (3.21)

S =-

/sz {nmn [efB(&rlPl + aﬂaQQ)eB} - [eiB(gxpPp + 59ﬁQ5)eB] » +

n

Replacing the partial derivatives of 2™ and of % by the gauge fields A™, A™, A% and A®
and then performing the field redefinition

A™ = [e"P(A"P, + A*Qa)e”]

m

A = [e’B(Aum + ABQg)eB]Q (3.22)

[e3

,10,



with similar expressions for the right-moving sector and introducing the Lagrange multiplier
terms forcing the gauge fields to be flat the new equivalent action takes the form

R2

4ol

S — /dzz[nmnAlmAln + JDjD +4Z€aﬁ <A/a [e—BgeB]QB _

— [e7P0e] . A’ﬁ) F T (JA™ — 9A™) 4 G, (DA™ — aAa)] . (3.23)

As can be immediately seen, just as for the case of the AdSs space discussed in section 3.1
for the (physically trivial) AdSs the fermionic gauge fields A’ and A’ appear only
linearly in the action and hence integration over them will yield constraints rather than

equations of motion.

3.3 The AdS,; x CP? target-space

Using the same procedure as for the AdS,, x S™ models we construct the Green-Schwarz
sigma model action (2.1) using the bilinear forms of (C.21),
R? - -
S = / dzz[ — 2a(Jp, + Ji,)(Tp, + i) (3.24)

4o/

—JIpdp = 2(JRy TRy + TR TRy, ) (077011 — 71517
—2i6lea5(J%j g — anJ IE — JSAJSE + jSéJS]§>:|

We proceed by taking the gauge-fixed coset representative

em“Pa—I—G?QfleB’ B = 69?Q51+£?S£1 D (ZyklRkl-i-ZyMR;‘cl‘)/y7 (3.25)

9= ye

where we also fixed six out of the eight x-symmetry degrees of freedom by setting §lo‘ = 0.
P, and Hlo‘Qla form an Abelian subalgebra.

Next, we would like to write the currents in terms of this parameterization, but in this
case the commutations relations [@Q, R] ~ Q and {Q, S} ~ R prevent us from getting two
kinds of currents as in (2.20), so

Jr = [eiB(dx“Pa + dﬂf‘Qla)eB]T + [edeeB]T = jr +ir. (3.26)
We have
J=Jr.Pa+igp@i +JqeQf + iRy Bk + Ry Rij + X Ais (3.27)

and

) =)@ Qf +HiQe@f +iseSi' +ise Si +iru B+ iR, Rij +x Asi 10D + 30y Minn- (3.28)

Kl Rl‘
The action in terms of these currents reads

2
S—R

4o

/dzz { o 277abjPaij —ipip (3:29)
_2((j +j)Rkl (.; "’]T)qu + (5 +JT)RH (] + j)qu')((Skp(Slq o 6k46lp)
—2i6"C 5 ((j+j)QzCY G+DQ’§ —(G+i)o (j+j)QkB _jSéjsé +jséj55>} ’
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We add gauge fields instead of the z, and 0;* derivatives and a suitable Lagrange multiplier
term. We define
A =eB(AP, + A2Q!)eP, (3.30)

(where A* = Ap, and A} = A ) and the action becomes

R2

4o/

S =

/dQZ[ — 20y A'p, Alp, = iDiD (3.31)
~2((A" + )Ry (A 1) Ry + (A + D) R (A + )Ry, ) (876" — 5¥6'7)
—22‘5“Caﬁ(<A’ i)t (A +7) g = (A +1)qu (A" +7) s~ Istigi + jsgjsg)
+TUOA, — DA,) + OX (DAL, — DAL)|.
3.3.1 Current expansion in fermions

To zeroth order in the fermions (67 ,9?‘, &) we get a bosonic sigma model with no fermions,

which we can T-dualize,
R2

Sy =
0 4o

; /dQZ [ — 2y°naAp, Ap, — jpjD (3.32)
_2{]' RudRpg T IRy qu}((;kpglq — §kasy 4 34 (04, — SAG)] ,

. _ ki kip..
where j = e BdeP, eB = yP By ButZy™ Riy)/y,

Next, leaving only 6 terms we find
“B(AP, + A5QL)eP = yA P, + y' 2 A7 (fﬁ (y— y—)czl + 9} (y—, y—)@&) ,
Y Y Y Y
thus the A”’s in terms of the A’s are

Ale — yAa7 A;a _ y1/2Az¢flk<y_7 y_>7 A/a _ y1/2Aa (y_7 y_) (334)
Y Y Y Y

Plugging these in the action we have

R? L .
S1 = Tnod dzz[— 2y°NabAp, Ap,—ipip — Q{JRkl]qu+]Rliqu}(6kp5lq—(skq(5lp) (3.35)
21y5kl(3’a5 (AaflnAmgk AaflnAmgk > —0A o)+ 91 (8Al _HAL )]
R’ 2 2 x - ~ . i ks
= e | 7 [ — 2y naAp, Ap, —ipip — 2{ijszz>q +ijsz@4}(5 PO —6%967)

2N Cop AL AL (9 Iaf) +3°(04, — 04,) + B (0L ~ )|

The bosonic T-duality works as before, but now we also have a quadratic term for the
fermions. The equation of motion for the fermions is

Ao gtk (fl 9 — fi gk> =—5.C b6, (3.36)

- 12 —



The matrix M™ = §tk gl =g} ) = —4iy™™ [y 4+ Oy y*! /y?), is an antisymmetric
three-dimensional matrix and hence has a vanishing determinant, so we cannot solve for Af.

Next, to first order in &' we have nontrivial jg and j Sio but these terms do not mix
with the A’s so we will ignore them. The A’s change as follows,

A} = A} —iA" () e (3.37)
Aa N Aa
At — Affcﬁaé“ﬁ AT — hﬁ(yij/y)AfCﬁagla'

Thus the change in (3.36) goes like

s AQ (03 i n_m m _n Z Q, n an M
(45, =4 ()s " €)™ (f19] = "0} ) = =5 O P00 + K" Eimrys )y (B:39)

and again, we have the same singular matrix M"" multiplying the gauge fields A. The
second equation, which we can think of as the first order correction to the bosonic
T-duality equation, is

2y° A%+ 268¢] (1°C)p (VI ARG +]7) = —0F. (3.39)

We can plug the solution for A™ in (3.38), but we will just get an expression of the form
i .

AP (3500 + OF)M™™ = =3 COP00 + K™ (& iy ) oo (340)

where ¢, F, k and ... are functions of the coordinates but not of A, so again we cannot
solve for Alﬁ .

Going next to first order in 0l~a (but leaving out terms of order 9?‘55 ) we have nontrivial
jor and ng, and also

A — A 4 AL (5 C) b (3.41)
with respect to (3.35), so the action we get is
R2 @ ' a aN( A AY snm
%= o / dQZ[— 29"y (A” + AT (1°C) a7 ) (A + A3,6"™ (77 C)os03)  (342)

—ipip — 2{@%!‘1506045? +ik)ipg + (P A Coalsy +§kl)qu}(5kp5lq — gki4'P)
—2i6"Cog (y(flm(A?n — A" (a)5E0) + I GF (A — A (1),7€)) +3)
—y(f"(AG — A" (7a)sE0,) +3i) (g7 (AD — iA%(),7€)) + ji) —Jsiigi + jslajsk)
5 5
FFUOA, — DA,) + 07 (9A, — aAg)} . (3.43)
The equations of motion (to first order in & or 6) are,
— 2y Aq + AL (1aC)pabi+  (3.44)
20"y Coas [0} (F A%, +50) () €3 — " (1a)s €0 (g AL +37)] = 0
28 Cogtf (" (Afy A" (1a)sE0) I )gf — 1T (A~ A (10), €0) i) b+ (3.49)
—2y A"6" (7, C) 350, + Ff = 0.

,13,



Plugging (3.44) in (3.45) we find
2i6t Cosn{ (a5 415 Oa)s"6h) 418 — 1o (A5 41 (s 63) 437) (340
+OTO™ (1,C) 5580, + Flf = 0.
Thus again the Af* will multiply the same singular matrix.

More generally, the bosonic singular matrix M will get corrections with even powers
of the fermionic variables,

mn

&, and M

mn

where M?2" is a matrix function with a power of 2n of the fermionic variables 0 and /or
is the purely bosonic singular matrix. In order to solve the equations of
motion we will need the inverse of M,,,, but such an inverse does not exists, because all
the matrices involving fermions should cancel each other order by order and we should get,

Omn = mkMk_nl = M, (Mil)Zn +o = Mrsnk(Mil)va (348)

mk
but M, is singular.

3.4 The AdS, target-space with eight supersymmetries

Similarly to section 2.1 we construct a Green-Schwarz sigma-model action on AdSs, but
using a different supercoset, namely PSU(1,1]2)/(U(1) x SU(2)), so this time we will have
eight supersymmetries rather then four. Using the Z4 structure of this super-algebra given
in (D.7) we construct the Green-Schwarz action

R2

4ol

_ o _ _ _ _
/dQ,z <—JPJK — JKJP+§€0{5(JQQJSB—JQQJ§B — JSQJQB‘FJSQJQB) . (3.49)

We parameterize the coset representatives such that

g= eacP—l—GaQaeB7 B = eé“Qa+§“5a+€aSaeyK_ (3.50)
If we define the following currents
J=g¢gYg=j+j, j= eiB(dacP + dﬂaQa)eB, j=e BdeP, (3.51)

Expanding j to zeroth order in the fermions in B we get,
jo) = dzP + s0°Qq + 2ydzD +idf* S, — y*dz K. (3.52)

Thus by using the Buscher procedure of introducing gauge fields as in the examples above,
to this order the action will not have quadratic terms in the fermions, so all the quadratic
df (or more precisely A®) terms in the action, coming from higher orders in the fermions
in B, will multiply some fermions, and we will not be able to solve the equations of motion
for the fermions. The reason again is that we will have to multiply the equations of motion
by a singular matrix.

— 14 —



4 A general analysis

In this section we present a general algebraic argument to when a supercoset is expected
to have a fermionic T-duality symmetry, and when it will fail to have one.

Let us assume a superconformal algebra G with a Z4 automorphism structure with
the zero grading subalgebra H, with the usual conformal bosonic generators P,, K, D,
T,
We can find an Abelian subalgebra A composed of a subset of the P’s and Q’s if we can

supercharges @, @, superconformal generators S, S and R-symmetry generators R,.

find an anti-commuting combination of supercharges. We denote by A, B, .. the indices of
A. Uppercase letters denote both bosonic and fermionic indices, lowercase letters bosonic
ones and Greek letters fermionic ones, A = {a,a}. We gauge fix the H symmetry and

parameterize the coset element as follows,
g:e“TAeB, AT e A, BeGo A (4.1)
More specifically we parameterize
B — exp(6Q + €S + £S)y” exp(y* Ry /y), (4.2)

where contraction of the fermions is understood (R, includes only the generators in the
supercoset, R, € G/H). The left-invariant one-form current will split into two pieces,

J=e Bdr, 7% + e PdeP = j+3j, (4.3)

where j is independent of the coordinates associated with the Abelian subalgebra x,. Gen-

erally, j and j can take any value in G. We give special indices to these generators as follows,
j=aT" j=iwT" (4.4)

(in general a is both in I and W and T/ N T" # @), so we can write the general

Green-Schwarz sigma model action as,

g /dz [] @50, 17 @50, W | @50), 1x | 5, wx (4.5)
1 . o
+5 (j§ )]53)UIJ +J§/V)JL(I)77WJ +j( )]g?)n ]S/)]g?)nwx>

1
__(][ Jy 77 +ijJ 77 +] Ix' N Iwx

. (1)) 17 30):6) W | 2(1)@) 1 | 3(1); (3)77 X)]

_ /dzz[A}<2>A§2>n1J+j<VzV>A}2> W A5, IX 0050, wx

1 _ _
+§ (Afl(l)Ag?))nU_i_j%ﬁlf)Af;S)nWJ_i_A'(l)]g?)n +J§;V)J(3) WX)
1/- _
_5(14/1(1)14{;3)77 n (I)A} )77WJ+A/I(1)]§?)77 +j%/)jg§)nwx)

+74(8A, — 5AA)},
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where A’ equals j when replacing the coordinate derivatives dz 4 with the gauge field Ay,
and 74 is the Lagrange multiplier. By the structure of j, (4.3), we see that A’ depends
linearly on A, so quadratic terms will rise only from A’A’ interactions in the action. We
also know that

AW = QT AL + QALY + 1AL + 514, (4.6)
and similarly for A’ @), Generally, we encountered two cases where Jgr is coupled to jQz
or to Jgr, namely we have terms in the action of the form

CnIJ(JszQJ - JQIJQJ), or CnIJ(JszQJ — jQIJQJ), (4.7)

where ¢ is some constant. Let us call these two cases, case I and case II respectively.
Case I appeared usually when considering PSU based model and case 11 when considering
ortho-symplectic based model. To zeroth order in the fermions of B we have

Ap = f)Ai,  Ap = gW)hE (" [y)Agr, A = g)E (Y /) Age, (4.8)

where the ¢, & indices are the R-symmetry indices of @, Q, so @ might have more indices
of transformation under the bosonic conformal group, which are the same on both sides
of the equations (4.8). To this order, the equations of motion for the bosons are

AP g2 — I, (4.9)

while for the fermions we have for the two cases

cn“thfthg\l) = F5(j,), and cn“gQ(ﬁ?hf‘ - Eé‘hf)Ag\l) = G5(j, 1), (4.10)
respectively. The matrix m" = n“ﬁgﬁhf‘} in the second equation is singular when the

dimension of the representation of () under R-symmetry is odd. That is the case for the
AdSy x CP? action. The matrix m will get corrections at higher orders in the fermions of
B, but these will contribute additively with even number of fermions to keep m bosonic.
Let us call the full matrix M so,

M =m+ O(x?), (4.11)

where x = {60, ¢, £}, The inverse matrix should have the form M1 = m™! + O(x?), since
all the fermions should cancel, so when m is singular so is M.

In case IT when the R-symmetry does not mix Q with Q (as in the AdSy case), we don’t
get a quadratic term to this order. Actually in this case we will get quadratic terms in Ag
when going to higher orders, so we will get equations of motion for Ag, but these will always
multiply terms of order O(x?) or higher in the fermions, so again we will have a singular
matrix multiplying Ag, and we will not be able to solve for them. The argument above does
not rely on fixing any fermionic degrees of freedom (specifically we don’t use k-symmetry).

We saw that there can also be a case III where the WZ term gives an interaction of

the form

Jods + -+, (4.12)
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and this is the case of AdSy with eight supersymmetries realized by the supercoset
PSU(1,1|2)/(U(1) x SU(2)). In this case, like for AdS,, As does not get corrections to ze-
roth order in the fermions, so the quadratic term 9006 again will be multiplied by a singular
fermionic matrix. This case has a different structure since the R-symmetry does not play
any role (its generators are in H), instead we have K (special conformal transformations)
that mixes @ with S and Q with S.
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A The osp(2|2) algebra

The osp(2|2) algebra is

[P, K| = —2D, [D,P] =P, [D,K] =K, [R,D]=0, [R,P]=0,
[Rv K] =0,
P,Q) =0, P,Q) =0, K.Q =5 [KQ)=5 [D.Q=30
[Da Q] = %Qa [Ra Q] = _iQa [Ra Q] = ’i@,
PS)=-Q,  [P8=-Q  [KS|=0  [K8=0 [D,8]=-35
D, 5] = —%5’, R, S] = —iS, R, 5] = iS,
{Q>Q}:0’ {Q>Q}:0’ {Q>Q}:2Pa {S’S}:O’ {S,S}:O,
{575}:2[(7 {Q,S}:O, {Q,S}:()’
{Q,S} =2D —iR, {Q,S}=2D+iR. (A.1)

This algebra admits a Z,4 automorphism. The automorphism relevant to our needs is
the one implemented by QXQ~! for X € osp(2[2), where

Q- (‘é“l 2) . (A.2)

Using this automorphism the algebra can be decomposed into Z4-invariant subspaces Hj
(k=0...,3) such that

Hi, = {X € osp(22)|Q0XQ7 ! = i* X},
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These subspaces are

Ho = {P - K, R},
Hi={Q+S, Q+ S},
Hyo = {P+ K, D},
Hz ={Q—-S, Q- S}

The Cartan-Killing bilinear form is defined by gxy = Str(XY). Its non-trivial elements are

Str(PK) = Ste(KP) = -1, Str(DD) = % Str(RR) = 2,
$tr(QS) = Str(QS) = 2. (A7)

B The osp(2|4) algebra

The definition of the OSp(2]4) group is that of [20]. The non-trivial brackets of the osp(2]4)
algebra are

[ana Mpq] = nmpan + 77nq]\4m]0 - 77mq]\4'n]0 - nanmqy
[an, Pp] - nman - ninma [ana Kp] - nmpKn - nnmea
[Da Pm] = Pm7 [D7Km] = _Kma [Pma Kn] = 277mnD - 2an7

1 A 1. 1 5 1.
[D,Qa] = 5Qa:  [D,Qa]=5Qa:  [D,Sa] =58, [D,8]=—55%,
[anaQa] = %(CanC_l)aﬁQﬁa [an,Qa] = %(nymnc_l)f@&

1 _ A 1 _ A
[anasa] = §(C'Ymnc 1)aﬁsﬁy [anasa] = 5(07mnc 1)aﬁsﬁ,

[Pma Sa] = i(CWmc_l)aﬁQﬁ, [Pma Sa] = Z'(C'Ymc_l)aﬁ@ﬁ,
[KmaQoz] - _Z‘(C'Ymcil)aﬁ's& [KmaQoz] - _Z‘(C'Ymcil)aﬁgﬁ
[Ra Qa] = iQa, [R, Qa] = _iQa, [R, Sa] = iSou [Ra Sa] = _iga
{Qa: Qs} = UCY™)apPrm,  {Sa S5} = —4HCY™)apKm,
{Qa, S5} = —2i(CY™) 0 Mo + 4icagD — 4eagR,
{Qu, S5} = —2i(CY™) g My, + 4icasD + 4deapR, (B.1)
where €19 = —ey = 1, €28 = —¢!2 = 1, Cap = €op and the Dirac matrices have the

index structure 7™ 5 and indices are lowered and raised using C'. The antisymmetrized
1
2
are space-time indices, o, = 1,2 are spinor indices and I,J = 1,2 are SO(2)

Dirac-matrices are ™" = 5[y™,~"]. The metric is n = diag(—1,1,1), m,n,p,q =0,...,2

R-symmetry indices.

The non-trivial elements of the Cartan-Killing bilinear form are

Str(Mpmn Mpq) = Dmpling — Mmg"nps Str(DD) = —1, Str(RR) = —2,
Str(PpKy) = —20mn, Str(QaSs) = —Sicag, Str(QaSs) = —Sieas. (B.2)
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The Z4 automorphism invariant subspaces are

HO = {ana Pm
Hl - {Qa

- Kma R},
- Sou Qa + goz}a

H? — {Pm+Kma D}a
H3 - {Qa +Sou Qa - ga}-

C The osp(6]4) algebra in so(1,2) @ u(3) basis

The osp(6|4) algebra’s commutation relations are given by

P‘ki’ )\mn] = 21'(5ml')\kh — (5kh)\ml')
[)‘ki’Rmn] = 2i(5ml-Rkn — 5nl'ka)
7
B, Bra] = 0, [Ran, Byl = 50,0121 = Oy = G A + 0,7
[Pa7pb] — O [Ka7Kb] - 07 [Pa7Kb] — 277abD - 2Mab
[May, Meq] = NacMpa + MaMac — NadMpe — MeMad
[ abs ] = Nac nbcPa [Mab7Kc] = nach - ncha
[ ] :P [DaKa]:_Ka, [‘D’Mab]zo
1
17t 1t
[D’Qa] - 2Qom [D’Soz] 2504
[Pe. QL] =0,  [Ka., S, =0
[Pm S(lx] - - 'Ya)ozﬁQ,lﬁa [Kaa Qla] - i(')’a)aﬁslg
7 7
[Mab7 Ql ] - __(Vab)ozBQlﬁa [ abs Sl] - _i(Vab)aﬁSlﬁ
[Rit, Q5 = (7' QE — 67 QL,), [Rpt, SE] = —i(6P' Sk — 67 SY)
(R Qb = —i(0"'Qh — 677QL),  [Ry;, SBl = (6" Sk — 67*5Y)
Aj» QP = 2i67'QF, Aj» SP] = 2i7 S*
Dis @3] = —2i075QL, [N, 58] = —2i67* ],
{Qa’ Qﬁ} =0, {Qi)n Qﬁ} = _5lk(7ac)aﬁpa
{Séuslg} =0, {Stlwsg} = _5lk(7ac)aﬁKa

{QL. S5} = —CapRu,

{Q, S5} = —CusRjj;

. . 1 " 1
{Ql,, S5} = —id™ (CaBD +ig(y bC)aﬁMab> + 5Cas;

: L 1, 1
{Q., 55} = o™ (CaﬁD —i5(y bC)aﬁMab> +5CapAy

mi)

(B.3)

aaaacaaa a9

The indices take the values k,I = 1,2,3 and the same for the dotted ones — the 3 and 3

of u(3), a,b = 0,1,2 are the 3 of so(1,2) and «, 3, ..
+,4). The generators satisfy R}, =

n = diag(—,

,19,

R;; and >‘kl' = )\?k

= 1,2 are the so(2, 1) spinors, and
and Qf, = (QL)".

The



(Va)o” are the Dirac matrices of so(1,2), and g = £[va,7]. We raise and lower spinor

indices as explained in appendix E.
The bilinear forms are given by

Str(Rpy Ryg) = —2(6™61 — 5kd5'P)
Str(QL %) = 2i6™ Cog
Str(P,Kp) = —2na

Str(DD) = —1

Str(Machd) = NacTlbd — Nadlbe

The Z4 automorphism matrix is given by

o0 0 010 O
0 2090 00 O
Q= 0 0 402(0 O

0 0 Ofoz O
0 0 0|0 —o2

The Z4 invariant subspaces of the algebra are
HO = {Pa - Ka7 Mab7 )\lk}’
Hy = {Qloz - S(l)qua - S(l)z}a
H? — {Pa + Ka, D, Rk‘l, Rkl}’
My = {Q), + SL. Q% + SL).

D The psu(1,1|2) algebra

(C.26)

(C.27)

The algebra of the PSU(1, 1]|2) group was developed by using the definition given in [18]

(which follows the definition given in [21] applied to matrices whose elements are all

Grassmann-even).

The su(1,1]2) algebra in a basis oriented towards the SU(2) R-symmetry is

[D, P] = P, [D,K|=~-K, [P,K]=-2D, [R;Rj]=—¢;pR,
D, Qul = 500, D, Qo) = 5Qu, D, Sa] = 35 1D, 8] = ~35.,
[P,Qa] = [P,Qa]l =0,  [P,Sa] =iQa, [P,Sa] =iQa,
K, Qo) = iS%a, (K, Qa) = iSa, [K,Sa] = [K,Sa] =0,
[Rij; Qal = _%UijaﬁQﬁa [Rij, Qa] = _%O'ijaﬁQﬁ,
[Rij, Sa] = —%Uz’jaﬁ Sp,  [Rij, Sa] = —%Jz‘jaﬁ Sp,
{Qa Q) = €apP, {Sa, 95} = capK,  {Qa,Sp} = _%eﬁvangij —i€apD,
{Qa,gg} = %eagl, {QQ,SB} = —%Eag]., {Qa,gg} = %‘EMUZWRM +ieqgD, (D.1)
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where a,b = 1,2 are AdSy indices, a, (3,7 = 1,2 are SU(2) R-symmetry indices, R;
(¢ = 1,...,3) are the generators of the SU(2) R-symmetry and R;; = ¢;;,R); are de-
fined for convenience. The antisymmetric tensors are defined such that €19 = 1, €193 = 1
and the generators of SU(2) are aijaﬁ = % <az~wa;7ﬁ - ajmazﬁ> with o; being the Pauli
matrices. In order to get the psu(l,1]2) algebra, one has to divide by the U(1) gener-
ator 1. The Grassmann-odd generators in the algebra above are not Hermitian but are
formed as linear combinations of the original Hermitian matrices with complex coefficients.
These combinations correspond to the multiplying the original Hermitian generators by
the complex Killing spinors found by the requiring the supercharges and superconformal
transformations to form Abelian subalgebras.

The non-trivial elements of the Cartan-Killing bilinear form are

1 1
Str(PK) =—1, Str(DD) = > Str(RiRj) = 551']‘7
Str(QaSﬁ) = _ieaﬁa Str(@a‘gﬁ) = iea,@ (DQ)

The Z4 automorphism is the same one as given in [18],

0= <O(’)3 133> . (D.3)

The Z,4 invariant subspaces of the algebra defined as
My, = {X e psu(1, 1)2)| QX Q! = z‘"“X} (D.4)
are

Ho = {P+ K, R3},

Hi = {Q2+ S2,Q2 + S5, Q1 — S1,Q1 — Si},

He = {P — K,D, Ry, Ry},

Hs = {Q1 + S1,Q1 + 51,Q2 — S, Q2 — Sa}. (D.5)

Another Z, automorphism is given by

Q- <“Ol 201> (D.6)

yields the following invariant subspaces of the algebra

Ho = {D, R;},

Hi = {Qa Qu}

Hy = {P, K},

Hs = {S,, S, }. (D.7)

This will give us the supercoset space PSU(1,1|2)/(U(1) x SU(2)) which is isomorphic to
AdSy with eight supersymmetries.
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E The psu(1,1|2) & psu(1,1|2) algebra

We build the super-algebra by taking the direct sum of two psu(1, 1|2) algebras (where we
take complex combinations of the odd generators), so the bosonic part is su(2) @ su(2) ~
so(4) and su(1,1)®su(l,1) ~ so(2,2). The non-vanishing part of the psu(1, 1|2)®psu(1,1|2)
algebra, involving odd generators, is given by

[D,P,] = P,, [D,K,|=—-K,, [D,Jy]=0, (E.1)
[Pm Ka] - (nabD + Jab) [Pa Jab] - 77(1ch - nbcPaa [Kw Jab] - nacpb - chKa,
[ Ru] = /J,l/a [Rpa ,uu] = 5puRu - 5pl/R/J7

[ pz77 ] = 5pMNO'V + 050 Npy — 5puNau - 5auNpu
[Pm ad] =Y [Kavséd] =0, [DvQé ] = anu [D,Séa] = _isgzou
[Ka’ éo}] = i(fya)dﬁsiga [Pa"sgzo}] = i(ﬁa)dﬁQaBa
1. 3 1. 3
[Jo1, Qhal = —5(701)5466&5, [ o1, Sha) = —5(701)&65i5,
i,.. 3 v, 3
[Rmséa] = 5(2’701)616(%1)0455[[;37 (R, gxd] = _5(2701)5[6(7”&6@237
i~ A
[N;W,SI ] = 50646(7#1/)0465/[35, [ ;w,Q ] = (’V,ul/)aﬁQéBa

7 Al A i A0 A
{ ad Jg} = _GIJCQ ( C)AAKG {anu ZB} - §EIJCCVB(’Y C)dBPa
{ a
{886 Q)3) = 57 (CapliCypD — —(Cv ")agdab)
QCaﬁN v(C)ap = i(7010) a5 Ru (¥ C)ap)

where the indices go as I = 1,2, & = 1,2, a = 1,2,a = 1,2, p = 1,2,3 and Cyg =
€ C. a3 = €ap- The gamma matrices are defined by (%)&B = {ioo, —0'}, (%1)@5 =

[’70,’71] = _igg}’ ('Vu)aﬁ = {o1,03,02}, (rhw)aﬁ = %[%u%/]aﬁ = {02,01,03}, where
o are the Pauli matrices, and 74, = diag(+, —). We raise and lower spinor indices using
Yo = ¢565a, P = eo‘ﬁqbg, where €19 = —e3; = €2 = —€2! = 1 and the same for hatted
objects. The bilinear Cartan-Killing forms can be rescaled to give

Str(PaKy) = Nab, Str(DD) =1, Str(JapJed) = dacObd — Oaddbe  (E.2)
Str(R,Ry) = b, Str(NuwNpo) = 0up0vs — 0us0up
I gl y_ 7 )
Str( wsﬁﬁ) = € "€apesp

The super-algebra has Z4 grading structure using the automorphism matrix

0 O o3 0

0 O 0 laxo
—to3 0 0 O

0 ilaxe 0 O

Q= (E.3)
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SO

Ho = {Jo1, N, Po — Ko, P — K1} (E.4)
Hi = {Saa +a"'Qla} (E.5)
Ho = {R,,D, Py + Ko, P + K1} (E.6)
My = {Saa —a’Qua} (E.7)
where a!/ = o7. So we can get the supercoset space PSU(1,1/2)2/(SU(1,1) x SU(2)),

whose bosonic part is AdS3 x S3. We also have another Z, grading structure with the

same number of supersymmetry generators

Ho = {D7J017NMV7R;,L} (E.8)
Hi = {Qha} (E.9)
Ho = {P,, K.} (E.10)
My = {Sia} (E.11)

which is the four-dimensional space BDI(2,2) ~ AdSy x AdSs, given by the supercoset
PSU(1,1]2)2/(SO(2)? x SO(4)).
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